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Abstract. We discuss different ways to produce liquid hydrogen at temperatures below its normal
freezing temperature, where it can enter a superfluid state. Our consideration is based on the fact that
solid and liquid phases may coexist in equilibrium at different pressures. To provide this pressure
difference we take a look at the effect of a one-sided mechanical pressure on the solid phase and
an external electrical field. We calculate thermodynamical functions for hydrogen both in stable
and metastable domains, and its phase diagram, and find a domain of possible superfluidity, using
a semiempirical thermodynamical model and recent data on critical temperatures of Bose liquids.
We estimate both the value of the excess pressure on solid hydrogen and the electrical field strength
necessary to stabilize the superfluid domain.

1. Introduction

Deeply supercooled hydrogen is a natural candidate for showing superfluidity since it is
composed of two pairs of fermions in singlet bound states (in para-hydrogen) [1–5]. To
produce superfluid H2 it is therefore necessary to find some way to supercool the liquid below
its normal freezing temperature. Ginzburg and Sobyanin [1] proposed studying the properties
of liquid hydrogen under negative pressures. The idea was that negative pressure would
lower the solidification temperature. The limitation of this approach is the thermodynamical
instability of the liquid against the formation of a gas phase. This type of instability has been
considered by Aculichev and Bulanov [6]. They concluded tentatively that hydrogen cannot
support a large enough static negative pressure to keep it liquid. In addition, some important
issues have not been resolved to date. These issues include the relative positions of the line of
thermodynamical loss of stability (spinodal) for a uniform liquid phase with respect to a gas
phase, the liquid–solid phase equilibrium line in the domain of negative pressures and, finally,
the position of a possible λ-transition line in the P–T plane. There is also a question regarding
the possibility of a λ-transition in supercooled liquid hydrogen under positive pressures. To
give answers to these questions, we have at least to know the thermodynamical functions for
solid and liquid hydrogen, allowing extrapolation into the domain of temperatures below the
triple point both under positive and under negative pressures.

Here we shall discuss other possibilities for superfluid H2 production arising because
a two-phase solid–liquid system may coexist in equilibrium at different pressures below its
normal freezing temperature. If we somehow create one-sided excess pressure on the solid
phase, then it may be possible for such a solid to coexist with a liquid at a smaller pressure.

On the other hand, as is known, strong external fields penetrating inside a body radically
affect its thermodynamical properties and may change the phase equilibrium parameters
[7]. Our interest is in attempting to find conditions in which liquid hydrogen will coexist

0953-8984/00/245071+15$30.00 © 2000 IOP Publishing Ltd 5071



5072 V S Vorob’ev and S P Malyshenko

in equilibrium with solid at temperatures below its normal freezing temperature due to
the presence of an electrical field. To this end, we will investigate general liquid–solid
phase equilibrium conditions with a planar interface in the external electrical field. Our
analysis will show basically that it is possible to realize the desirable shift of the phase
equilibrium.

However, to calculate the necessary excess pressure of the solid phase, we must know the
dependence of the chemical potentials for both the solid and the liquid supercooled phases on
pressure, the position of the possible λ-transition line in the P–T plane and the wide-range
hydrogen thermodynamical functions.

Existing empirical and semiempirical methods of calculation of the thermodynamical
functions of liquid hydrogen [8, 9] are constructed on the basis of experimental information
about compressibility and curves of phase equilibrium; direct extrapolation into the domain
of temperatures below the triple point is unreliable. Here we use a method (see the appendix)
of constructing the equation of state proposed in previous publications [10, 11]. There the
elastic oscillations of molecules about their equilibrium positions in both solid and liquid
phases were described in terms of the Debye theory modified so as to obtain the ideal-gas
equation of state in the limit of high temperature and low density. In contrast to the case for
the approaches used previously [12–14], the elastic component of the liquid free energy (cold
curve) is not equal to that of the solid phase. In addition, we introduce the configurational
(common) entropy for the liquid phase, which is a measure of its disorder. The configurational
entropy was also considered in earlier publications [15, 16]. The thermodynamical model
described above contains functions to be defined: the volume dependence of the Debye
temperature, the value of the configurational entropy and the elastic component of the free
energy for both solid and liquid phases. These functions are determined from the condition
that the thermodynamics constructed on the basis of our model must correspond to tabulated
data for the thermodynamical functions along coexisting lines of different phases. In this
paper we use the tables for thermodynamical properties of hydrogen [8], coordinated with the
totality of experimental findings. This procedure allows us to find all the unknown functions
and thus calculate any thermodynamic value—in particular, in the metastable domain at low
temperature. As shown below, the difference between the elastic components of the solid and
liquid phases and the presence of the configurational component of entropy for the liquid
phase are the main contributions to the distinction between the solid and liquid states at
temperatures below the triple point for hydrogen. We compare the calculated isotherms of
pressure with experimental data and obtain a good agreement. The accuracy of our calculations
is reasonable for finding the phase equilibrium lines in the P–T plane and calculation of some
thermodynamical functions at low temperatures.

We present a domain of the pressure–temperature plane where the deeply supercooled
hydrogen can be in a superfluid state. For that we use a recent calculation from Apenko [17]
where the critical temperature of the λ-transition was determined for supercooled liquid
hydrogen as a function of density.

The dependencies of the chemical potential upon pressure for the solid and supercooled
liquid phases at the λ-transition temperature allow us to find the one-sided excess pressure of
the solid phase, provided that the latter is stable. The value of this pressure is about 30 atm and
it is of the same order as the pressure corresponding to the tensile strength of solid hydrogen
at low temperatures.

We also estimate the electrical field strength under which liquid hydrogen can remain
liquid at extremely low temperatures. This is of the order of 5 × 107 V cm−1 and it can exceed
the breakdown strength.
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2. The hydrogen P –T diagram and the domain of possible superfluidity

Using the method of calculation of the hydrogen thermodynamical functions given in the
appendix, we calculate the phase diagram for H2. Such a diagram is presented in figure 1.
We can extend the melting curve into the domain of negative pressures and temperatures lying
below the triple point. A set of isochores for the liquid state is also shown. It is known that the
liquid–gas spinodal—the line of absolute loss of stability of the liquid state—envelops this set.
This line is apparent in figure 1. One can see it restricting the possibility of extension of the
melting line in the metastable domain to pressure values lower than −90 atm. This practically
excludes the possibility of obtaining stable superfluid hydrogen at negative pressures lower
than the latter value. This possibility has been discussed in a number of works [1, 6].
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Figure 1. The P –T diagram for hydrogen. Thick lines: 1: the sublimation line; 2: the melting
line; 3: the evaporation line; 4: the melting line extended into the metastable domain; 5: the
boundary of the superfluid domain (d = 2.7 Å); Tr is the triple point; Cr is the critical point. Thin
lines: a set of isochores for values of v varying from v = 12.5 (the upper isochore) to v = 31
cm3 g−1 (the critical isochore). The envelope of this set of isochores forms the liquid spinodal.

The critical temperature of Bose–Einstein condensation of a 3D homogeneous system of
hard-sphere non-ideal bosons has been determined recently [5]. In [17], a formula for the
critical temperature of the superfluid transition in Bose liquid has been obtained. This formula
can be written in the form

Tλ = 0.899K exp

(
−0.109

K

T

)
(1)

where K is the kinetic energy. It can be calculated with the help of London’s formula [18]

K = 2πh̄2d

m(a − 0.891d)2(a + 0.731d)
(2)

where a = n−1/3, n = ρ/m. For hydrogen the value of the hard-core diameter d � 2.7 Å, as
estimated in [19].

The accuracy of expression (1) was verified with experimental results for liquid helium.
The calculated values for the critical temperature correlate well with experiment.
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Using (1), we can find the value of the λ-line temperature for a given value of the density.
Then, using our equation of state for supercooled hydrogen (see the appendix), we can calculate
the corresponding values of the pressure and chemical potential. Thus we obtain a line dividing
the plane of variables P–T into domains of superfluid and normal liquid. The results of our
calculation are depicted in figure 1 as line 5. We can see that the temperature of the superfluid
transition is about 1–2 K. It should be noted that line 5 is similar to the λ-line of liquid helium.
Besides this, for the isochores with v > 12.75 cm3 g−1 there is a domain of positive pressures
where deeply supercooled liquid hydrogen can become superfluid.

To investigate the possibility of existence of a deeply supercooled liquid state, let us
construct isotherms of chemical potential for the solid and liquid states at different pressures.
Isotherms at T = 13.8 K are presented in figure 2. The value of 13.8 K corresponds to
the triple-point temperature for hydrogen. Line 1 in figure 2 and in the following figures
corresponds to the solid chemical potential. The values of the liquid-phase chemical potential
are depicted in figure 2 (and the following figures) as line 2. One can see that these two lines
have a point of intersection at a positive pressure close to zero. This pressure value correlates
well with the experimental value of the melting pressure at the triple point—0.07 atm. Similar
isotherms are drawn in figure 3 at T = 1 K, approximately corresponding to the λ-transition
temperature. In this case the values of the liquid chemical potential are larger than the solid
ones and the point of intersection of the isotherms does not exist under positive pressures.
Besides this, the liquid isotherm reaches the liquid spinodal point earlier than the expected
intersection point with the solid isotherm under large values of negative pressures. Thus the
solid phase is more advantageous thermodynamically for this temperature. Line 3 in the figure
represents the ideal-gas chemical potential. At this temperature and this scale of pressure, the
latter is presented as an almost vertical line.
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Figure 2. The dependence of the solid (line 1) and liquid (line 2) chemical potentials on pressure for
the triple-point temperature T = 13.8 K. The point of intersection of the solid and liquid isotherms
corresponds to the equilibrium melting pressure.

3. Coexistence of phases under different pressures

In general, solid and liquid phases may coexist in equilibrium at different pressures, provided
that they are separated by a suitable wall. For example, some kind of porous wall, which the
liquid will wet, may separate a high-pressure solid from a low-pressure liquid while the two
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Figure 3. The dependence of the solid (line 1), liquid (line 2) and gas (line 3) chemical potentials
on pressure for temperature T = 1 K. The line µ gives the value of the chemical potential in the
presence of a field.

are in equilibrium through the wall. Since a transfer of mass is allowed in either direction,
it is necessary for equilibrium that the values of the chemical potential of the pure substance
should be the same on both sides of the wall. It is not necessary, however, that the pressures
should be the same on both sides, because the nature of the wall is such that an increase of
volume of the solid phase at the expense of that of the liquid phase is allowed.

A graphical interpretation of this kind of equilibrium is given in figure 3 for hydrogen at
T ∼ 1 K. The line µ gives the value of the full chemical potential if the phase pressures are
not equal and the solid pressure is greater than the liquid one. Here we will not discuss the
practical ways of creating the wall providing the existence of excess pressure acting only on
the solid state. It is important for us to investigate in principle the possibilities of this method.

Now we can estimate the solid–liquid phase equilibrium parameters at different pressures.
Assuming that the liquid pressure must be positive (in this case the gas phase cannot be
formed), from figure 3 we obtain a value of the pressure difference of about 33 atm. So if we
create a solid-phase pressure of about 33 atm and we simultaneously have the possibility of
existence of a liquid phase at a pressure of the order of 0 atm, then phase equilibrium between
these phases becomes possible. At such values of the phase pressures and a temperature
of about 1 K, we can expect it to be possible for hydrogen to exist as a liquid and enter a
superfluid state.

An obstacle to this may be the small mechanical strength of solid hydrogen. According
to the data in [20], the static Young’s modulus and relative expansion corresponding to the
yield limit for hydrogen at temperatures of about 1–2 K are equal respectively to 3300 atm and
0.008. Therefore solid hydrogen can accept pressures of the order of 26 atm with no change
of its form—of the same order as the excess pressure acting only on the solid state.

4. Liquid–solid phase equilibrium in the presence of an electrical field

Let us investigate the possibility of creation of the different phase pressures with an external
electrical field.
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Consider a substance at a constant temperature in volumeV in the presence of an electrical
field. Let as assume that the substance breaks down into two phases. Phase 1 (solid) occupies
the bottom of the volume V and phase 2 (liquid) the top. The phase boundary is a planar
surface. As is known, the force per unit volume in a liquid dielectric can be written as

f = ∇
[
E2

8π

(
ρ
∂ε

∂ρ

)
T

]
− E2

8π
∇ε (3)

where E is the strength of the electrical field, ε is the dielectric constant, ρ is the density and
T is the temperature.

The volume force exerted on a solid dielectric by an electrostatic field can be accounted
for by both the change in density (like in liquid) and deformation without any accompanying
change of volume (shearing strains) [21]. Hereafter for simplicity we will neglect this kind of
deformation. In this case, the force in the solid will also be described by (3) with the values
of the density and dielectric constant corresponding to this solid.

Integrating (3) over a thin layer along the normal direction to the interface, just like in [22],
we obtain

p1 − p2 = �p − E2
2

8π

(
ρ2
∂ε2

∂ρ2

)
T

+
E2

1

8π

(
ρ1
∂ε1

∂ρ1

)
T

(4)

were p2 and p1 are the pressures of the liquid and the solid at the interface. In expression (4)
the index 1 refers to the solid phase and 2 to the liquid one. �p is the surface force at the phase
boundary. This value is equal to

�p = −ε1 − ε2

8π

(
E2
t + E2

n

ε1

ε2

)
(5)

where Et and En are tangential and normal components of the electrical field strength;
E2

1 = E2
t + E2

n and E2
2 = E2

t + E2
nε

2
1/ε

2
2 are the total electrical field strengths at the solid

and liquid phase boundaries respectively.
This surface force occurs only at the interface, depends on the local values of the parameters

and must be compensated by strengths providing equilibrium of the substance as a whole—for
example, due to the change of the hydrostatic pressure of the liquid at the interface [22].

Assuming that the Clausius–Mosotti law is valid, we can write the pressures in the liquid
and the solid at the phase boundary in the form

p2 = p0 +
E2

2(ε2 − 1)(ε2 + 2)

24π
(6)

p1 = p0 +
E2

1(ε1 − 1)(ε1 + 2)

24π
(7)

where p0 is the pressure in the absence of the field.
As is known [7], the full chemical potentials of the phases, including the additional field

component, at the phase boundary must be equal. Let us write this condition for our case:

µ1(p1)− E2
1

8π

(
∂ε1

∂ρ1

)
T

= µ2(p2)− E2
2

8π

(
∂ε2

∂ρ2

)
T

(8)

where µ1(p1) and µ2(p2) are the chemical potentials of the phases under pressures p1 and p2

respectively. Using (6), (7), (8) and the fact that the chemical potential for condensed matter
is practically proportional to pressure and expanding the chemical potential µ1 in (8) into a
Taylor series at the point p1 = p2, instead of (8) we obtain the following expression:

µ1(p2)− µ2(p2) = E2
2(ε2 − 1)(ε2 + 2)

24π

(
1

ρ1
− 1

ρ2

)
. (9)
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Let us take a look at figure 3. We would like to obtain the liquid phase in the presence of
the field in the domain of pressure lying to the left of the gas chemical potential dependence
(line 3). The gas chemical potential at this value of temperature is practically a vertical line
under pressure pg � 0. So the liquid-phase pressure has to be at least positive. In this case,
the gas phase cannot be formed.

Then from (9) we can find the electrical field strength, provided that we have at least
positive values of p2 � 0. Assuming that Et = 0, we obtain

En = ε2

ε1

√
24π �µρ1ρ2

(ε2 − 1)(ε2 + 2)(ρ1 − ρ2)
(10)

where �µ = µ2(p2)− µ1(p2) is the chemical potential difference.
For hydrogen, the values are ε1 � 1.3, ε2 � 1.25, ρ1 = 0.087 g cm−3 and ρ2 = 0.078

g cm−3, taken from [8]; the value of the chemical potential difference at T � 1 K and pressure
about zero taken from figure 3 is equal to ∼10 K. Substituting all of these values in (10), we
obtainEn ∼ 5×107 V cm−1. At such values of the electrical field strengths and temperatures,
we can expect hydrogen to remain liquid and enter a superfluid state.

A serious obstacle to this is the possible breakdown of the dielectric. We do not know
the breakdown strength for hydrogen under such conditions. So we can use only indirect data.
According to [23], the breakdown strength may never exceed 1 × 106 V cm−1 in liquid helium
and 1 × 107 V cm−1 in liquid nitrogen. These values are less than is necessary for our goals.
However, if a pulse voltage is used, the breakdown strength can increase [24]. There are also
other methods of improving the electrical strength.

5. Discussion

We have developed a thermodynamical model based on tabulated data for hydrogen thermo-
dynamical functions along the lines of coexisting phases. This model makes it possible to
calculate thermodynamical functions in the metastable domain. The predictions of this model
in the stable domain are in good agreement with experimental data relating both to liquid and
to solid hydrogen

The relative positions of the liquid–gas spinodal, the melting line and the λ-transition line
exclude the possibility of superfluid hydrogen production through supercooling under negative
pressures.

In the presence of an excess pressure acting only on the solid phase, coexistence of a
two-phase solid–liquid equilibrium system is possible at temperatures corresponding to the
expected λ-transition. Therefore the stable phase of deeply supercooled liquid H2 may be
superfluid. However, the necessary values of this excess pressure are of the same order as the
hydrogen failure limit.

To stabilize the two-phase solid–liquid hydrogen at T ∼ 1 K, an external electrical
field can be used. The values of electrical field strength needed have to be of the order of
∼5 × 107 V cm−1 and can exceed the breakdown strength, although direct measurements of
the latter are unavailable.

Note further that, in the case of both mechanical and field compression of crystal, the
intensity of the external effect on the liquid–solid two-phase system which is required to attain
the parameters of the expected λ-transition in liquid hydrogen proves to be close to the limits
of its mechanical or electric strength. However, the values of the excess pressure on the solid
phase and the electrical field strength that are needed can be decreased if a combination of
the suggested methods of compression (excess pressure on the solid phase together with an
electrostatic field) is used.
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To create a one-sided pressure on the solid phase, we can use, for example, a porous piston
with a pore size of less than the critical wavelength of the liquid–solid interface instability,
as discussed in [25]. Our estimations show that the pore has to be less than ∼0.2 µm. For
the liquid hydrogen, this pore piston will be permeable, but propagation of the solid–liquid
interface inside the porous space makes permeability difficult to achieve if the pore size has
this or a lower value.

To detect experimentally whether the liquid inside the porous space is superfluid we can
use, for example, the sharp increase of the effective thermal conductivity of the porous body
filled with liquid hydrogen at the transition point.

The possibility of practical realization of the methods suggested above depends on how
surmountable the difficulties involved prove to be.
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Appendix

A.1. The thermodynamic model of the solid phase

Following [10, 11] we will write the expression for the free energy per unit mass for the solid
phase in the form

Fs = FT (v, T ) + Us(v) (A.1)

where FT is the thermal component of the energy and Us(v) is the elastic (cold) component
including the contribution of zero-point oscillations. We will write the former in the Debye
approximation:

FT = T

m

[
3 ln(1 − e−�D/T )−D

(
�D

T

)]
(A.2)

where m is the mass, T is the temperature, v is the specific volume, �D is the Debye
temperature. The latter depends on the specific volume thus:

�D = �0s exp

(
−

∫ v

v0

! d ln v

)
. (A.3)

Here, �0s is the Debye temperature for T = 0, when v = v0, ! is the Grüneisen coefficient
and

D(x) = 3

x3

∫ x

0

y3 dy

ey − 1
(A.4)

is the Debye function.
The expressions for the entropy and pressure following from (A.1) take the forms

S = k

m

[
4D

(
�D

T

)
− 3 ln(1 − e−�D/T )

]
(A.5)

p = 3T !

mv
D

(
�D

T

)
+&s(v) (A.6)



Regarding molecular superfluid hydrogen 5079

where

&s(v) = −dUs(v)/dv (A.7)

is the elastic (cold) component of the pressure.

A.2. The thermodynamical model of the liquid phase

We will write the expression for the free energy per unit mass for the liquid phase in the
form [10, 11]

Fl = FT (v, T ) + Ul(v) + Fc. (A.8)

The thermal component FT , describing the vibrations of molecules in the vicinity of the
position of equilibrium, takes, as for solid phase (10), but with the effective Debye temperature,
the form

� = �D(1 + L) (A.9)

where

L = h
√
T

(2πmk)1/2(gamv)1/3�D
(A.10)

is the generalized Lindeman parameter. In (A.10), ga is the statistical sum for the gas atoms.
We also assume that solid and liquid phases are described by the unified volume

dependence of the Debye temperature �D(v). Its variation during the solid–liquid transition
will correspond to the change of �D from the value �D(vs) to �D(vl).

The quantity Fc in (A.8) is the configuration component of the free energy, which serves
as a measure of the liquid disorder. In contrast to [10], here we use a somewhat different
expression for this component:

Fc = −T s
m

[
1 −D

(
�

T

)]
(A.11)

where the dimensionless quantity s of the order of unity may be referred to as the residual
entropy of liquid.

The value Fc → −T s/m when T → 0 and Fc → 0 when the density and temperature
increase. The Debye function in expression (A.3) is appropriate here, because it is in the
conventional Debye approximation.

Correspondingly, the expression for the configuration component of the entropy has the
form

Sc = ks

m

[
1 + 2D − 3�

T (e�/T − 1)

]
. (A.12)

The elastic component of the free energy for liquid differs from that for solid. This difference is
due to the different natures of liquid and solid states. In particular, the density and evaporation
energy of liquid and solid both slightly differ. The expressions for the entropy and pressure
following from (A.8) take the forms

S = k

m

{
4D

(
�

T

) [
1 − 3L

8(1 + L)

]
− 3 ln(1 − e−�/T ) + s

[
1 + 2D

(
�

T

)
− 3�

T (e�/T − 1)

]}
(A.13)

p = 3T

mv

[
D

(
�

T

)
(1 − s) + s

�

T (e�/T − 1)

]
! + L/3

1 + L
+&l(v) (A.14)
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where

&l(v) = −dUl(v)/dv. (A.15)

It may readily be shown that the free energy (A.8), entropy (A.13) and pressure (A.14) in
the limit L→ ∞ become the respective expressions for the ideal gas. On the other hand, the
entropy of deeply supercooled liquid in the limit T → 0 remains finite, similarly to the entropy
of amorphous solids. Its value is equal to ks/m. Nevertheless the derivative (∂P/∂T )V = 0
when T = 0—that is, the liquid entropy tends to a constant limit (not equal to zero) when
T → 0.

A.3. Determination of the volume dependence of the Debye temperature and the residual
entropy

The thermodynamical model described above fails to define the volume dependence of the
Debye temperature, the parameter s in the configuration component of the free energy and
the cold curves for the solid and liquid phases. As in [11], let us find these quantities from
the condition of correspondence of the thermodynamics constructed using formulae (3)–(10)
and (A.1)–(A.7) with tabulated data along coexisting lines of different phase states. We
use thermodynamical functions for hydrogen tabulated in [8] and reconciled with the entire
body of experimental data on the thermodynamical properties of hydrogen. We equate the
entropy, calculated for the solid phase using (A.5) and for the liquid phase using (A.13), to the
tabulated values. The value of�D(v)was found numerically from the equation thus obtained.
This procedure was carried out for all five coexistence curves—namely, the sublimation,
solidification, melting, evaporation and condensation curves. The results are presented in
figure A1, which shows the dependence �D on v.

The open-square symbols show tabulated data for along coexisting lines for the liquid
state, corresponding to the case of s = 0—that is, the absence of the configuration entropy.
The large open circles show tabulated data for along the sublimation and solidification lines for
the solid state. As one can see, without the configurational entropy, the solid–liquid transition
is accompanied by a drastic jump of the Debye temperature. It is hard to explain this jump from
the physical standpoint, because the loss of long-range order in the crystal cannot affect the
vibration frequency of atoms in the neighbourhood of the position of equilibrium so radically
(this circumstance is pointed out in Frenkel’s monograph [26]). These positions depend, first
and foremost, on the immediate environment of the atom, also changing during the transition
to the liquid state, but not so strongly.

If we now consider non-zero configuration entropy, the situation will change. The results
of the calculation for s = 0.72 are plotted with small open circles. In this case, the Debye
temperature varies continuously in all states of matter. The value found, s ∼= ln 2, does not
run counter to the grid model [27], whereby the value of s for crystal is equal to 0 and for
ideal gas to 1. Some intermediate value should be realized for the liquid, which is difficult
to calculate exactly and, as noted in [27], ‘the question of collective entropy of the liquid
state remains unclear’. The fact that the excess entropy of liquids in comparison with solid
is approximately equal to ln 2 for the same values of the specific volumes has been noted
in [28]. In recent work [16], Wallace notes that the entropy of melting contains a universal
disordering contribution of ∼0.8. He suggests that liquid consists of a universal number of
random structural valleys. It is of interest that the value that he proposed is close to the value
that we found here.

One can see that, in such a wide region of volume variation, the Debye temperature is
a monotonically decreasing function of volume, which may be approximated by a simple
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Figure A1. The universal dependence of the Debye temperature on the specific volume. Large
open circles correspond to values of the Debye temperature found from the tabulated data for the
solid state. Open squares correspond to values for the liquid state with the value of s = 0. Small
open circles correspond to the Debye temperature values found from the tabulated data for the
liquid state with the value of s = 0.72. The continuous lines show the approximation (A.16).

formula. Such an approximation can be written as

�(v) = 120 × 10

v
exp

{
2.75

[(
10

v

)2.83

− 1

] /
2.83

}
K. (A.16)

The Grüneisen coefficient is found as a logarithmic derivative from the Debye temperature
dependence. From (A.16) it follows that

!(v) = 1 + 2.75

(
10

v

)2.83

. (A.17)

The expressions (A.16), (A.17) are valid while v � 11 cm3 g−1. The approximation curves
for the Debye temperature calculated using (A.16) are plotted in figure A1 as a continuous
curve without points. As is clear from figure A1, the approximation curves are fairly similar
to those obtained from the tabular data.

A.4. Determination of the elastic components of the energy and pressure

The information on the volume dependencies of �D and ! makes it possible to calculate the
thermal components of the pressure, (A.6) and (A.14). In this case, the elastic component
of the pressure may be determined as a difference between the tabular values of the pressure
on the phase coexistence lines and the thermal components calculated. The results for cold
pressure obtained thus are plotted in figure A2. The tabulated values correspond to open circles
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Figure A2. The dependence of the elastic (cold) pressure for the solid and liquid phases on the
specific volume. The open circles represent the tabulated data for the solid phase. The solid squares
represent the tabulated data for the liquid phase. The open squares correspond to experimental
data [29]. The continuous lines are constructed on the basis of expression (A.18).

and solid squares for liquid. For the solid phase (S), this method enables one to obtain only
a section of the cold pressure curve because the tabular data terminate at the triple point with
the maximum possible volume for the solid phase. Using the method described in [11], we
can restore the full cold curve for the solid phase, also shown in figure A2. This curve passes
through the tabulated values for the solid phase. For the liquid (L), the data for the pressure
on the lines of melting, saturation and condensation permit the cold curve to be fully restored.
The liquid cold curve intersects the axis of volumes at the point v0l = 12.76 cm3 g−1, which
is somewhat greater than the value in the analogous case for a solid (v0s = 11.48 cm3 g−1).
The open squares in figure A1 present experimental data for solid hydrogen [29]. The latter
correlate well with our calculations.

A method for constructing curves for cold energy from the cold curves for pressure is
described in [11]. The approximation curves for cold energies for T = 0, corresponding to
those for cold pressure, are shown in figure A3. They have minima at the points v0l and v0s ,
equal to q0l and q0s respectively. The solid phase has a deeper minimum than the liquid one.
This means that the solid state for T = 0 is more advantageous thermodynamically than the
liquid one. The line connecting open squares represents the variational calculations of [30].
The asterisk plots the experimental value of the hydrogen energy obtained in [31]. This value
is in reasonable agreement with our calculations.

Quantum effects are known to reduce the internal energy very drastically. If quantum
effects for hydrogen were absent, then the maximal depth of the energy would equal ∼6D,
where D is the depth of the pair molecular potential. This relation is valid for systems with a
short-range potential when the law of corresponding states holds. For hydrogen, D = 37 K,
so the maximal depth of the energy must equal approximately −222 K. Instead, we have only
the value −92 K. The difference of these two values emphasizes the role of quantum effects
for molecular hydrogen.
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Figure A3. The dependence of the elastic (cold) energy for the solid and liquid phases on the
specific volume. Continuous lines show our calculations on the basis of approximation (A.18).
The open squares correspond to the variational calculation of [30]. The asterisk is the experimental
point from [31].

The cold curves for the pressure and energy that we found can be approximated by the
expression

U = −q0
1 + a1x + a3x

3

1 + a1x + a2x2 + a3x3 + a4x4
(A.18)

where

x = v/v0 − 1. (A.19)

In table A1, we give the values of the constants contained in expression (A.18).

Table A1.

Phase q0 (J g−1) a1 a2 a3 a4 v0 (cm3 g−1)

Solid 402.5 6.38 3.977 25.95 9.53 11.48
Liquid 365 5.74 1.704 25.55 9.53 12.76

The cold pressure curve may be found from (A.18) by simple differentiation.
So we find the dependence of the Debye temperature and potential parts of the energy

and the pressure on the volume using tabulated values of the entropy and pressure for along
coexisting lines of different phases. We have a full equation of state for hydrogen and we may
calculate any thermodynamical function in both stable and metastable domains.

A.5. Thermodynamical properties

A test of the accuracy of our calculations can be performed by comparing the calculated
isotherms of pressure for the liquid state with experimental data. Such isotherms of pressure
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for the liquid state are shown in figure A4. Here you can see the critical isotherm and isotherms
for T = 33 K. Experimental data from the works [32–34] with values of the temperature of
T = 15, 20, 25, 27, 30, 32 K are also shown in this figure as symbols. Our calculations are
presented as continuous lines for the same values of the temperature. The agreement between
experimental and calculated values is good.
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Figure A4. The isotherms of the pressure for different temperatures. 1 is the critical isotherm;
2: T = 32 K; 3: T = 30 K; 4: T = 27 K; 5: T = 25 K; 6: T = 20 K; 7: T = 15 K.
The experimental points are obtained from the works [32–34], for the corresponding values of the
temperature.

It is significant that the low-temperature-domain thermodynamical properties for both the
solid and the liquid phases are determined mainly by the elastic component of the pressure
which we found on the basis of experimental data. In this connection, using our model for the
calculation of thermodynamical functions at low temperatures is quite justified.
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